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Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage.
A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this
research in order to study the cancer genes, DNAwalk plots of genomes of patients with lung cancer were generated using a program
written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using
a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have
found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA
sequences. So we confirmed this method can be used for early detection of lung cancer.Themethod introduced in this research not
only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

1. Introduction

Cancers are caused by uncontrollable growth of cells which
do not die. Normal cells in the body grow, divide, and finally
die (apoptosis) in an orderly path. When the death process of
cells breaks down, cancer starts. In case of cancer, cells con-
tinue to grow and divide instead of having a programmatic
death which results in a bunch of abnormal cells growing out
of control.

Lungs are spongy organs in the chest which take in
oxygen and release carbon when human inhales and exhales,
respectively. Lung cancer begins in the lungs. Lung cancer is a
dominant type of cancer which kills many people every year
compared to other types of cancer.

When the cell’s gene cannot correct the DNA damage, the
lung cancer appears. Inhaling carcinogenic substances is the
main reason of lung cancer.

For years some methods have been investigated in order
to diagnose the lung cancer. Most of these methods are based
onmedical theories. Among these methods, employing com-
puted tomography (CT) image analysis is more dominant.
By computed tomography of chest Mets et al. derived and
validated a model of lung cancer which studies the coronary
and aortic calcium volume in lung [1]. Veronesi et al. analyzed

computed tomography images of lung in case of smokers
and former smokers in order to detect the lung cancer [2].
In another work Jiménez-Bonilla et al. worked on diagnosis
of recurrence and assessment of postrecurrence survival in
patients with extra cranial non-small cell lung cancer using
18F-FDG PET/CT [3]. See also [4–6]. On the other hand,
some researchers have worked on analysis of patients’ DNA
for diagnosis lung cancer. An et al. detected tumor-associated
aberrant hyper methylation of the p16 gene in DNA extracted
from plasma. Using a modified seminested methylation-
specific PCR, they did their experiments on 105 non-small
cell lung cancer patients and 92matched tumorDNA samples
[7]. In a recent research, Jelovac et al. detected PIK3CA DNA
mutation in plasma of a patient with breast and lung cancers
[8]. In another extensive work, Diehn et al. employed deep
sequencing for detection of circulating tumor DNA in non-
small cell lung cancer [9].

Beside some works done on the prediction and analysis
of lung cancer from biological point of view, there are few
researches being reported which use mathematical models
for diagnosis of lung cancer. McCulloch et al. used mathe-
matical model for developing a model-based CAD algorithm
which capture scanner physics and anatomic information.
Their model uses multiple segmentation algorithms in order
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to extract structures in the lungs. Also, they proposed a
selection framework which was based on Bayesian statistical
model in order to determine the probability of different
anatomical events throughout the lung [10]. Kang et al.
constructed a diagnostic and prognosticmathematical model
of lung cancer. In fact this model integrates let-7 and miR-
9 expression into a signalling pathway in order to generate
an in silico model for the process of epithelial mesenchymal
transition (EMT). They used this model for diagnostic and
prognostic biomarkers in lung cancer [11]. In a recent work,
Hndoosh suggested a fuzzy mathematical model for detec-
tion of lung cancer using a multi-NFclass with confusion
fuzzy matrix for accuracy [12].

Fractals are scale-invariant geometric objects. A scale-
invariant object can be self-similar or self-affine. A self-
similar object is a union of rescaled copies of itself which
is isotropic or uniform in all directions. But in case of self-
affine objects, the mechanism is anisotropic or dependent on
the direction. Regular fractals have higher self-similarity, but
random fractals have a weaker self-similarity.

The class of regular fractals includes many familiar
simple objects, such as line intervals, solid squares, and solid
cubes, and also many irregular objects. The scaling rules are
characterized by “scaling exponents” (dimension). “Simple”
regular fractals have integer scaling dimensions. Complex
self-similar objects have noninteger dimension. Therefore,
it is completely incorrect to define fractals as geometric
objects having “fractional” (noninteger) dimension. Fractals
may be defined as geometric objects whose scaling exponent
(dimension) satisfies the Szpilrajn inequality:

ℵ ≥ 𝐷
𝑇
, (1)

whereℵ is the scaling exponent (dimension) of the object and
𝐷
𝑇
is its topological dimension, that is, Euclidean dimension

of units from which the fractal object is built. For example,
in case of Brownian motion: the path of a particle, a line of
dimension one, traveling for a long time over a plane region,
eventually covers the entire plane, an entity of dimension two
[13].

In case of multifractal system a single fractal dimension
cannot describe its dynamics. In this case, a continuous
spectrum of exponents is needed [14].

We deal with manymultifractal systems in nature such as
fully developed turbulence and heartbeat dynamics. In case
of using fractal for detection of lung cancer, limited works
have been reported which are based on analysis of tumor’s
shape using fractal dimension. Miwa et al. found out that the
d-FD of intratumoral heterogeneity of FDG uptake can help
to differentially diagnose malignant and benign pulmonary
nodules. The SUVmax and d-FD obtained from FDG-PET
images provide different types of information that are equally
useful for differential diagnoses [15]. Lee et al. reported
that fractal dimension of carcinoma epithelial architecture
can assist in differentiating adenocarcinoma (ADC) from
squamous cell carcinoma (SCC) of the lung [16].

In spite of all of these works, no work has been reported
which analyses the complexity and correlation of damaged
DNA. In this paper we use the concept of fractal dimension
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Figure 1: The plots of DNA walk of original sequence.

and the Hurst exponent in order to analyse the DNA
sequences. In order to do this task first we illustrate DNA
walk as a randomwalk and then by introducing the spectra of
fractal dimension and the Hurst exponent we compute these
parameters for DNAwalks extracted fromDNA sequences of
patients with lung cancer. The multifractality and correlation
of patients’ DNA walk are discussed in detail.

2. DNA and Random Motion

A DNA sequence of chromosome in the cell’s nucleus is
a combination of four letters. These letters, A, C, G, and
T, are the bases adenine, cytosine, guanine, and thymine,
respectively. For instance, a DNA sequence is

. . .GTCAGAGCCTATCGTTACG. . .

This string can bewritten in the formof numbers by assigning
1 for T, 2 for A, 3 for C, and 4 for G, so

. . .4132424331213411234. . .

In fact, the DNA sequence is the root for development of a
complete organism.

For years many mathematical methods have been devel-
oped in order to study the nature of DNA sequences.

DNA walk plotting is a popular method which generates
a planar trajectory of DNA sequences. In thismethod first the
DNA text is converted to a binary sequence and then theDNA
walk plot is defined by the cumulative variables [17]. By this
consideration,DNAwalk can be considered as a randomwalk
(Brownian motion) where each point in the plot can deflect
up or down in nucleotide distance.

DNA sequence can be defined by two of six possible
combinations which are purines (A+G), pyrimidines (C+T),
Imino (A+C), Keto (G+T), Weak (A+T), and Strong (G+C).
Combination of pyrimidine tract with purines tract is long
known for analysis of DNA [18]. In this research we chose
this combination as it helps in better detection of the long
dependence property in DNA sequences (see [17, 19]).

Figure 1 shows the one-dimensional DNAwalk plot using
purine-pyrimidine binary rule. This rule changes purines
(A/G) to −1 and pyrimidines (C/T) to +1.
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Downward deflection Upward deflection

Figure 2: Upward and downward deflection in the DNA walk from
one point to the next point.

In the next section by introducing the Hurst exponent we
discuss the correlation of the random walks and in special
case the DNA walks.

3. Hurst Exponent and Type of Motion

In order to analyse the behaviour of a DNA walk, the
direction of fluctuation (deflection) from one point to the
next point [20] and in a bigger view the correlation of
walk should be considered (Figure 2). This behaviour can
be studied by computing the Hurst exponent. The Hurst
exponent is an indicator of the long term memory of the
process. In fact, it is the measure of the predictability of the
DNA walk.

The value of the Hurst exponent can be between 0 and 1,
where the value that it gains in each moment determines the
behaviour of the next deflection in the random walk.

Each point in the DNA walk can deflect up or down
based on the binary map of the DNA sequence. In case of
no correlation between the points in walk, the Brownian
motion is dominant. Otherwise, long term memory and
accordingly fractional Brownian motion define the walk.
These two conditions can be characterized by different values
of the Hurst exponent. When 𝐻 = 0.5, the process is
Brownian motion and when 0 < 𝐻 < 1 (𝐻 ̸= 0.5) the
process is fractional Brownian motion. In case of Brownian
motion,𝐻 = 0.5, the process is considered to be truly random
(e.g., Brownian motion). It means that there is absolutely no
correlation between any values of the process and it is hard
to predict the future of process. The analysis of the Hurst
exponent for fractional Brownian motion can be categorized
in two ranges. Firstly, if the Hurst exponent has a value
between 0 and 0.5, it means that the process is antipersistent;
that is, the trend of the process at the next instant will be
opposite to the trend in the previous instant. Secondly, a value
of 𝐻 between 0.5 and 1 means that the process is persistent;
that is, the trend of the process at the next instant will be the
same as the trend in the previous instant.

In this research, we compute the value of the Hurst
exponent for damagedDNAwalk and compare its valueswith
the normal DNA walk. This comparison helps us to find out
about the correlation and predictability of damaged versus
normal DNA walk.

There are different methods which have been developed
to estimate the value of 𝐻. Rescaled range analysis (𝑅/𝑆)
and DFA are two main methods for estimation of the Hurst
exponent. By the initial analysis of computed Hurst exponent
of DNA walks we found out that even if 𝑅/𝑆 method shows
higher values of Hurst exponent than DFA, the standard
deviation has lower values for 𝑅/𝑆, and then the confidence
intervals are narrower. Thus in our case 𝑅/𝑆method is more

Table 1: Characteristics of movement for each nucleotide.

Nucleotide Number of
occurrence (bp) Probability Movement

A 9521 0.3015 −1
G 6398 0.2026 −1
T 9487 0.3004 1
C 6170 0.1954 1
Total value 31576 1

precise. It is noteworthy that both methods show closer
results as the DNA sequence becomes longer.

So in this research we employ 𝑅/𝑆 analysis method for
computing the Hurst exponent which is described in the next
section using a sample.

4. Rescaled Range Analysis of
the DNA Sequence

𝑅/𝑆 analysis is described in many literatures as a famous
method for calculating the Hurst exponent of time series. So,
by employing this method, the values of the Hurst exponent
can be computed for the DNA walk. The same method used
in case of time series can be applied to DNA sequence. The
calculations are explained here through a sample. Consider

𝑋 (𝑠, 𝑙) =

𝑠

∑

𝑢=1

{𝜉 (𝑢) − ⟨𝜉⟩
𝑙
} . (2)

In (1), 𝑠 is a letter on the sequence which has 𝑙 letters long, and

⟨𝜉⟩
𝑙
=
1

𝑙

𝑙

∑

𝑠=1

𝜉 (𝑠) . (3)

In an application sample brought in Table 1, the sum of
movements is computed as

𝑙

∑

𝑠=1

𝜉 (𝑠) = 9521 + 6398 − 9487 − 6170 = 262. (4)

So,

⟨𝜉⟩
𝑙
=
1

𝑙

𝑙

∑

𝑠=1

𝜉 (𝑠) =
262

31576
= 0.008297 ≈ 0. (5)

Thus,

𝑋 (𝑠, 𝑙) =

𝑠

∑

𝑢=1

{𝜉 (𝑢) − ⟨𝜉⟩
𝑙
} ≈

𝑠

∑

𝑢=1

{𝜉 (𝑢) − 0} =

𝑠

∑

𝑢=1

{𝜉 (𝑢)} .

(6)

By conversions of adequate letter we define

𝑅 (𝑙) = max𝑋(𝑠, 𝑙) −min𝑋 (𝑠, 𝑙) , (7)

𝑆 = [
1

𝑙

𝑙

∑

𝑠=1

{𝜉 (𝑠) − ⟨𝜉⟩
𝑙
}
2
]

1/2

. (8)
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Table 2: Some published values of𝐻 for DNA sequences.

Sequence 𝐻 Reference
Human beta-cardiac myosin Heavy chain
gene 0.67 [25]

Human beta-globin gene 0.708 [26]
Synthetic model sequence 0.655 [26]

From (6),

𝑅 (𝑙) = max
𝑠

∑

𝑢=1

𝜉 (𝑢) −min
𝑠

∑

𝑢=1

𝜉 (𝑢) . (9)

From Figure 1,

𝑅 (𝑙) = 205 − (−430) = 635. (10)

From (5) and (8)

𝑆 = [
1

𝑙

𝑙

∑

𝑠=1

{𝜉 (𝑠) − 0}
2
]

1/2

= [
1

𝑙

𝑙

∑

𝑠=1

(𝜉 (𝑠))
2
]

1/2

≈ 1. (11)

So

𝑅

𝑆
≈ 𝑅 (𝑙) = (

𝑙

2
)

𝐻

. (12)

Consequently,

𝐻 =
log𝑅 (𝑙)
log (𝑙/2)

=
log 635

log (31576/2)
≈ 0.668. (13)

Based on the last discussion, the value of𝐻 suggests that there
exists good persistence in the DNA walk as it is between 0.5
and 1.

Some of published values of 𝐻 for DNA sequences are
brought in Table 2.

As it can be seen in Table 2, there are good correlations in
all cases for normal DNA.

In this research 𝑅/𝑆 values are computed for 𝑙, 𝑙/2, 𝑙/4, . . .,
and 𝑙/2𝑛. Then, for each division of 𝑙, the average value of
𝑅/𝑆 is computed again. The value of the Hurst exponent
is obtained by computing the slop of linear regression line
in log(𝑅/𝑆) versus log 𝑙 plot. In this research we calculate
the Hurst exponent in different segment of DNA walk and
report a signal-shaped plot for it not only an average value.
Using this method we are able to talk about the memory and
predictability in the DNA walk.

5. Spectra of Fractal Dimension

In this section we use the concept of fractal dimension for
computing the complexity of DNA walk. In order to use
this measure we consider the equations in the work done by
Kulish et al. [21] by converting in case of DNA walk instead
of time series.

In case of DNA walk with 𝜉max and 𝜉min, by dividing the
total range in𝑁 bin,

𝑁 =
𝜉max − 𝜉min
𝛿𝜉

. (14)

The probability that the value falls into the 𝑖th bin of size 𝛿𝜉
is computed as

𝑤
𝑖
= lim
𝑁→∞

𝑁
𝑖

𝑁
, (15)

where 𝑁
𝑖
equals the number of items the value falls into the

𝑖th bin. In case of a DNA walk,

𝑤
𝑖
= lim
𝑙→∞

𝑠
𝑖

𝑙
, (16)

where 𝑠
𝑖
is letter in the 𝑖th bin in the entire sequence of length

𝑙.
The Renyi entropy for the probabilities of letters of order

𝑞 is

𝐸
𝑞
=
1

1 − 𝑞
log
2

𝑁

∑

𝑖=1

𝑤
𝑞

𝑖
. (17)

Note that for 𝑞 → 1

𝐸
1
= −

𝑁

∑

𝑖=1

𝑤
𝑖
log𝑤
𝑖
. (18)

The fractal dimensions for a DNA walk are defined as

ℵ
𝑞
= lim
𝛿𝜉→0

1

𝑞 − 1

log∑𝑁
𝑖=1
𝑤
𝑞

𝑖

log 𝛿𝜉
, (19)

where −∞ < 𝑞 < +∞. In case of a self-similar series with
equal probabilities, 𝑤

𝑖
= 1/𝑁 is the same for the entire of

series. In this case, (19) yields ℵ
𝑞
= ℵ
0
for all values of 𝑞.

For a given DNA walk, fractal dimension (ℵ
𝑞
) which is

computed from (19) stands for the probability distribution of
walk. A bigger value of ℵ

𝑞
corresponds to the more complex

(less predictable) DNAwalks which have shaper fluctuations.
Also, when the range of fractal dimension variation is wider,
the DNA walk is more fractal. It is clear that the zero range
stands for self-similar fractals.

Considering the unexpectedness, DNAwalk with steeper
spectra has more unexpected values. On the other hand,
flatter spectra stand for less unexpectedness [13].

6. Result and Discussion

In this section we compute the Hurst exponent and fractal
dimension for DNA walks in case of different subjects and
compare the results for diagnosis of skin cancer.

6.1. Data Collection. Scientists have found that tumors shed
nucleic acids (DNA or RNA) into the blood stream. So,
the plasma can be used as the source of tumor DNA [22].
Scientists believe that plasma DNA is of tumor origin as its
genetic alterations are similar to the corresponding primary
tumors [23].

In this research, blood plasma samples were collected for
genetic testing from 50 patients with histologically confirmed
lung cancer (group 1) (non-small cell carcinoma) and 50
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Figure 3: Generated Hurst exponent plots for DNA walks of 8 healthy subjects.

healthy control individuals (group 2). In each group, 25
subjects are men and 25 subjects are women and all of them
are 32 years old. It is noteworthy that all patients were smoker.
Patients did not receive chemotherapy or radiotherapy before
their recruitment. Healthy individuals with no prior history
of cancer were recruited from the staffs in our institution.
Information on smoking habits was collected by means of
self-reporting.

In this research we employed the similar methodology
employed byWeber et al. [24] for collection of DNA samples.
In this research we used 2mL of the plasma. We prepared
Proteinase K with two wash buffers (WBI) in DNA sample
preparation kit. Then, we mixed the plasma with 260𝜇L
Proteinase K and 2.1mL DNA PBB (binding buffer) and

incubated it at room temperature for 25 minutes. After that
we mixed 500 𝜇L isopropanol with the lysate and then trans-
ferred it into the High Pure Extender Assembly. Then, these
assemblies were centrifuged at 4000×g for 1min. The DNA
was eluted in 100 𝜇L DNA EB (elution buffer).The extraction
yields high quality DNA suitable for further analyses.

All procedures were approved by the Internal Review
Board of the University and the approval for experimentation
involving human subjects was issued by Sarawak General
Hospital and the university. It is noteworthy that the identity
of all subjects remains confidential.

6.2. Data Analysis. In order to do the analyses at first the data
were preprocessed to homogenize the data set. A program
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Figure 4: Generated Hurst exponent plots for damaged DNA walks of 8 patients with lung cancer.

was written in MATLAB to generate the DNA walk for the
sequences. This program maps the DNA sequences to DNA
walk using themethoddiscussed in Section 2.After this being
established, the DNA walk is analysed by computing the
Hurst exponent and fractal dimension based on the methods
brought in Sections 4 and 5. These analyses are done using a
program written in MATLAB.

Here, we bring some of the generated plots for the Hurst
exponent and fractal dimension spectra in case of healthy
subjects and patients with lung cancer. Figure 3 shows the
Hurst exponent plots for the DNA walks in case of healthy
subjects.

As it can be seen in plots (a) to (h) (Figure 3) the overall
behaviour of the Hurst exponent variations is decreasing

behaviour as its value tends to 𝐻 = 0.5. This behaviour
stands for the fact that memory of DNAwalk is decreasing in
the genome. The small upward deflections seen in the plots
stand for the small increases in the genome’s memory. It is
clear that by decreasing the value of𝐻 (getting closer to 0.5)
and accordingly the memory of genome, the predictability of
DNA walk is decreasing. Having the value of𝐻 in all plots in
the range of 0.5 < 𝐻 < 1 stands for the fact that there are
good correlations in the DNA walks. The averaged value of
the Hurst exponent for 50 subjects was computed as 0.726.

In case of patients with lung cancer, some of the generated
Hurst exponent plots for damaged DNA walks are shown in
Figure 4.
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Figure 5: Grand average of the Hurst exponent plots for damaged
DNAwalks for all of the healthy subjects (black curve) versus grand
average of the Hurst exponent plots for damaged DNA walks for all
of subjects with lung cancer (red curve).

The analysis of plots for damaged DNA walks shows
almost similar behaviour to the Hurst exponent plots for
the normal DNA walks. As it can be seen in plots (a) to
(h) (Figure 4) in overall the Hurst exponent variations tend
to 𝐻 = 0.5. But as it is clear, in case of damaged DNA,
variations of theHurst exponent show steeper behaviour than
cases that belong to normal DNAwalks in Figure 3. Like plots
in Figure 3, the small upward deflections seen in the plots
stand for the small increases in the genome’s memory. It is
clear that by decreasing the value of𝐻 (getting closer to 0.5)
and accordingly the memory of genome, the predictability of
DNA walk is decreasing. But in these cases the memory and
predictability ofDNAwalks are decreasing faster thannormal
DNA walks, which stands for the fact that the damaged DNA
is less able to store information and increases its memory.
Another difference between plots in Figures 3 and 4 can be
seen in the values of theHurst exponent, where in average the
Hurst exponent has smaller values that are closer to𝐻 = 0.5
in case of damaged DNA compared to normal DNA and this
stands for the fact that there is less correlation in the damaged
DNA walk compared to normal DNA walk. The averaged
value of the Hurst exponent variations for 50 subjects was
computed as 0.537 which is smaller than the computed value
for healthy subjects.

In order tomake a clear comparison, the grand average of
the Hurst exponent plots for all of 50 healthy subjects versus
the grand average for all of 50 subjects with lung cancer is
shown in Figure 5.

The analysis of the grand averaged Hurst exponent plots
for the normal and damaged DNA walks gives the results
which do not deviate from what have been observed in
Figures 3 and 4. As it is clear in case of damaged DNA walk,
variations of theHurst exponent show steeper behaviour than
the case that belongs to normal DNA walk. On the other
hand, the Hurst exponent has smaller values that are closer
to 𝐻 = 0.5 in case of damaged DNA compared to normal
DNA.

Also in order to compare the mean of Hurst exponent
values in case of each sample we compute 95% confidence
intervals in case of healthy subjects and subjects with lung
cancer and then determine whether the intervals overlap. As
it is known when 95% confidence intervals for the means
of two independent populations do not overlap, there will

M
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po
ne

nt
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0.726

0.537

Group 2

Group 2: healthy subjects

Group 1

Group 1: subjects with lung cancer

Figure 6: Comparison of confidence interval for means of Hurst
exponents.

be indeed a statistically significant difference between the
means (at the 0.05 level of significance). Figure 6 shows the
computed confidence intervals.

As it is clear in Figure 6, confidence intervals in case
of healthy subjects (red bar) with the variation 0.72486 ≤
𝑋 ≤ 0.72714 and subjects with lung cancer (green bar)
with the variation 0.53586 ≤ 𝑋 ≤ 0.53814 do not overlap,
which means they are necessarily significantly different. So
this result stands for the significant difference between the
Hurst exponents values in case of two groups of subjects.

In order to analyse the complexity of DNA walk in case
of normal and damaged DNA walks the fractal dimension
spectra of DNA walks are discussed here. Figure 7 shows the
fractal dimension spectra plots for DNA walks in case of
healthy subjects.

It is clear in all plots that overall behaviour of the fractal
dimension variations is increasing behaviour.This behaviour
stands for the fact that complexity of DNA walk is increasing
in the genome. The small downward deflections seen in
the plots stand for the small decreases in complexity of
DNA because of small increases in the genome’s memory. By
increasing the fractal dimension’s value, the predictability of
DNAwalk is decreasing as the DNA is getting more complex.
The averaged value of the fractal dimension variations for 50
subjects was computed as 1.263.

In case of patients with lung cancer some of the spectra of
fractal dimension plots for damaged DNA walks are shown
in Figure 8.

The analysis of plots for damaged DNA walks shows
almost similar behaviour to the fractal dimension plots for
the normal DNA walks. As it can be seen in plots (a) to
(h) (Figure 8) in overall, the fractal dimension variations
show increasing behaviour. But as it is clear, in case of
damaged DNA, variations of the fractal dimension show
steeper behaviour than cases that belong to normal DNA
walks in Figure 7. Like plots in Figure 7, the small downward
deflections seen in the plots stand for the small increases
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Figure 7: Spectra of fractal dimension plots for DNA walks of 8 healthy subjects.

in the genome’s memory. It is clear that by increasing the
value of fractal dimension the predictability of DNA walk
is decreasing. But in these cases the predictability of DNA
walks is decreasing faster than normal DNA walks. Another
difference between plots in Figures 7 and 8 can be seen in
the values of the fractal dimension, where in case of damaged
DNA the fractal dimension has bigger values compared to
normal DNA and this stands for the fact that the damaged
DNA walk is more complex compared to normal DNA walk.
The averaged value of the fractal dimension variations for
50 subjects was computed as 1.442 which is bigger than the
computed value for healthy subjects.

In order tomake a clear comparison, the grand average of
the spectra of fractal dimension plots for all of the 50 healthy
subjects versus the grand average for all of the 50 subjectswith
lung cancer is shown in Figure 9.

The analysis of the grand averaged fractal dimension plots
for normal and damaged DNA walks gives the results which
do not deviate fromwhat have been observed in Figures 7 and
8. As it is clear in case of damaged DNA walks, variations of
the fractal dimension show steeper behaviour than the case
that belongs to normal DNA walks. On the other hand, the
fractal dimension has bigger values in case of damaged DNA
compared to normal DNA.



Computational and Mathematical Methods in Medicine 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

ℵ

(a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(d)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(e)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(f)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(g)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

l (nucleotide distance) ×10
4

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

1.55
1.5

1.45
1.4

1.35
1.3

1.25
1.2

ℵ

(h)

Figure 8: Spectra of fractal dimension plots for damaged DNA walks of 8 patients with lung cancer.

Also in order to compare the mean of fractal dimension
values in case of each sample, we compute 95% confidence
intervals in case of healthy subjects and subjects with lung
cancer and then determine whether the intervals overlap. As
it is known when 95% confidence intervals for the means
of two independent populations do not overlap, there will
be indeed a statistically significant difference between the
means (at the 0.05 level of significance). Figure 10 shows the
computed confidence intervals.

As it is clear in Figure 10, confidence intervals in case
of healthy subjects (red bar) with the variation 1.26150 ≤
𝑌 ≤ 1.26450 and subjects with lung cancer (green bar)
with the variation 1.44060 ≤ 𝑌 ≤ 1.44340 do not overlap,

which means they are necessarily significantly different. So
this result stands for the significant difference between the
fractal dimensions values in case of two groups of subjects.

All the analyses which have been done in this research
showed that by computing the values of the Hurst exponent
and fractal dimension we are able to diagnose the damaged
DNA’s as they show more complexity and less predictability
compared to normal DNA’s.

7. Conclusion

In this paper, we worked on diagnosis of lung cancer by
analysing the damagedDNA. By defining theHurst exponent
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Figure 9: Grand average of the spectra of fractal dimension plots
for damaged DNA walks for all of the healthy subjects (black curve)
versus grand average of the spectra of fractal dimension plots for
damaged DNA walks for all of the subjects with lung cancer (red
curve).
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Figure 10: Comparison of confidence interval for means of fractal
dimensions.

and fractal dimension we talk about predictability and com-
plexity of damagedDNA.The analyses ofHurst exponent and
fractal dimensions plots show that DNA walks have smaller
values of the Hurst exponent and bigger values of fractal
dimension in case of the damaged DNA compared to normal
DNA. Also, the Hurst exponent and fractal dimension plots
for damagedDNA show steeper behaviour than normal DNA
plots. These results stand for the fact that damaged DNA
is less predictable and more complex compared to normal
DNA. The method used in this research can be applied for
analysis and diagnosis of other types of cancer. Analysing the
DNA walk by this method can guide us in modelling and
prediction of DNA walk using fractal models.
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